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Abstract Analytical Hartree–Fock gradients with respect to
the cell parameter have been implemented in the electronic
structure code CRYSTAL, for the case of one- and two-
dimensional periodicity. As in most molecular codes,
Gaussian type orbitals are used to express the wavefunc-
tion. Examples demonstrate that the gradients have a good
accuracy.
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1 Introduction

Analytical gradients [1–7] have become a standard tool in
molecular quantum chemistry. They are indispensable for
the optimization of structures, and many properties can be
efficiently computed with the help of analytical derivatives.
The field was pioneered by Pulay [8]; the theory had already
been derived earlier independently [9].

The traditional quantum chemical methods are difficult
to apply to solids because of the large increase of the compu-
tational effort with the system size. After several decades of
development, Hartree–Fock calculations for solids can now-
adays be routinely performed with the CRYSTAL code [10,
11]. Although Hartree–Fock calculations often have large
errors due to the neglect of electronic correlation, a large
interest has grown in the past few years due to the success
of hybrid functionals which include an admixture of exact
(Fock) exchange.

Analytical gradients in the CRYSTAL code were first
implemented with respect to nuclear positions [12,13], and
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after the implementation of a scheme for geometry optimiza-
tion, an efficient structural optimization could be performed
[14]. In periodic systems, the cell parameter is another var-
iable to be optimized. The first gradients with respect to
the cell parameter, at the Hartree–Fock level, were for sys-
tems periodic in one dimension [15,16]. Various groups have
implemented these gradients in one dimension [17,18] (see
also the recent review article [19]) or in two dimensions [20].
For the general case, a strategy to compute cell parameter
derivatives (and thus the stress tensor) was suggested with
point charges [21], and an algorithm for structural optimiza-
tion, based on redundant internal coordinates was proposed
[22]. Second analytical derivatives with respect to the cell
parameter have also been implemented recently [23].

The first big step of the corresponding implementation in
the CRYSTAL code was analytical Hartree–Fock gradients
with respect to the cell parameter in three dimensions [24].
It is important to note that the CRYSTAL code is based on
the Ewald [25,26] method in three dimensions, so that com-
puting analytical gradients with respect to the cell parameter
requires various additional derivatives: for example the recip-
rocal lattice vectors depend on the cell parameter, and vari-
ous others. This requires additional derivatives which were
not yet available with the implementation of nuclear gradi-
ents, and this has been documented in great detail [24]. The
one- and two-dimensional cases are again different because
different potentials are used: Parry’s potential in two dimen-
sions [27,28], and Saunders’ potential in one dimension [29].
Parry’s potential is similar to Ewald’s potential, but modified
for the case of two dimensions. Saunders’ potential relies on
a real space approach.

This article is intended to complement the first article on
cell gradients [24]. Many parts have already been described in
the first article, and therefore the main emphasis is to delin-
eate the differences due to the dimensionality. The article
consists thus of one section about the general differences to
the three-dimensional case, one section about the two-dimen-
sional case, one section about the one-dimensional case, and
one section with examples.
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2 General differences with respect to the
three-dimensional case

The main difference to the three-dimensional case is the way
how the Coulomb energy is computed. The expression to be
evaluated is the Coulomb energy per cell:

Ecoul = 1

2

∫
d3r

∫
d3r ′ρ(

−→r )�(
−→r − −→r ′)ρ(

−→r ′) (1)

with � being the potential function corresponding to three
dimensions (Ewald’s potential function) [25,26], two dimen-
sions (Parry’s potential function) [27] or one dimension (Saun-
ders’ potential function) [29].

ρ(
−→r ) is a cellular charge distribution, composed of the

nuclear charges Za at the positions of the nuclei
−→
A a ,

ρnuc(
−→r ) =

∑
a

Zaδ(
−→r − −→

A a) (2)

and the electronic charge distribution

ρel(
−→r ) = −

∑
−→g ,µ,ν

P
ν
−→g µ

−→
0
φµ(

−→r − −→
A µ)

×φν(
−→r − −→

A ν − −→g ) (3)

The basis functions φµ(
−→r − −→

A µ − −→g ) are real spherical
Gaussian type functions, P

ν
−→g µ

−→
0

is the density matrix in

real space.
−→
A µ denotes the nucleus where the basis func-

tion µ is centered. The implementation is done for the case
of closed shell Hartree–Fock and unrestricted Hartree–Fock
methods. For the sake of simplicity, the spin is ignored in the
equations in this article. The extension is straightforward, as
was shown for the three-dimensional case [24]. Examples for
spin-polarized calculations are given in sect. 5.

The potential function enters via the nuclear-nuclear repul-
sion (Eq. (10) in [24]), the nuclear attraction integrals (Eq.
(34) in [24]), and the field integrals (Eq. (43) in [24]). Essen-
tially, the derivatives are computed as described in the previ-
ous article [24], there are only minor differences as described
in Sect. 3 and 4.

The derivatives of the other integrals (overlap, kinetic
energy, multipoles, bielectronics) and the calculation of the
energy-weighted density matrix is practically identical to the
three-dimensional case [24].

Finally, the correction due to the spheropole (Eq. (47) in
[24]) is zero in one and two-dimensions and thus does not
have to be discussed. The spheropole is a correction which
arises due to the Ewald method when applied to the electronic
charge distribution: the charge distribution is approximated
by multipoles in the long range, and not approximated in
the short range. The electrostatic potential is then computed
as the sum of the Ewald potential of the multipoles and of
the Coulomb potential of the charge distribution in the short
range. Replacing the Ewald potential with the Coulomb po-
tential is correct, if the difference of multipolar charge dis-
tribution and the exact charge distribution in the short range
has zero charge, dipole, quadrupole, and second spherical

moment [26]. The second spherical moment can also be seen
as the average electrostatic potential of a charge distribution
(see the discussion in Sect. 3.2 of [26]). Here, it corresponds
to the average electrostatic potential of the difference of the
exact and the approximated charge distribution. This term is
finite and in general non-zero, in the case of periodicity in
three dimensions. However, when the system has periodicity
in less than three dimensions, the average electrostatic po-
tential of a charge distribution with zero total charge, dipole
and quadrupol, is zero. Therefore, there is no spheropole in
less than three dimensions.

This can also be seen from Eq. (31) in [26]. The average
Coulomb potential is obtained as follows:

� = − 2π

3Vcell

∫
ρdiff(

−→r )
−→r 2

d3r (4)

where ρdiff(
−→r ) corresponds here to the difference between

the exact charge distribution and the multipolar charge dis-
tribution. The integral is over the whole space and finite.
The prefactor involves a division by the cell volume Vcell
of the three-dimensional cell. We might now approximate
a system with periodicity in two dimensions by a system
of slabs with three-dimensional periodicity, where the slabs
are separated by a vacuum region. When we increase the
vacuum region and thus the cell volume Vcell, then the inte-
gral remains essentially constant, but the prefactor becomes
increasingly smaller and therefore the average Coulomb po-
tential becomes zero, and the spheropole correction becomes
zero.

It should be mentioned, that two-dimensional periodic-
ity is implemented in the CRYSTAL code in such a way that
there is only one slab which is not repeated in the third dimen-
sion. Still, the argument presented above holds in a similar
way, and there is thus no spheropole correction in systems
with less than three-dimensional periodicity.

The total energy is thus similar to the three-dimensional
case [24], apart from the spheropole term which is zero:

E total = Ekinetic + ENN + Ecoul−nuc + Ecoul−el + Eexch−el

=
∑
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The individual terms contributing to the total energy are the
kinetic energy Ekinetic, the nuclear–nuclear repulsion energy
ENN, the nuclear–electron attraction Ecoul–nuc, the electron–
electron repulsion Ecoul–el and the Fock exchange Eexch–el.
The variables will not all be explained in order to reduce the
number of formulas in this article. The reader is referred to
the article on the three-dimensional case for the details where
all these terms are explained [24]. The gradient with respect
to the cell parameters ai j is given in the following equation.
As the total energy, the gradient is similar to the three-dimen-
sional case apart from the spheropole term which is zero.

Fai j = −∂ E total

∂ai j

= −
∑
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exp(i
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aνn(
−→
K )aµn(
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K )εn(
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K )

×�(εF − εn(
−→
K ))d3k (6)

3 The two-dimensional case

In the two-dimensional case, the primitive cell is given by
two vectors, with two components: −→a 1, −→a 2. ai j are defined
in such a way that a11 = a1x is the x-component of −→a 1,
a12 = a1y the y-component of −→a 1, a21 is the x-component
of −→a 2, and a22 is the y-component of −→a 2.(−→a 1−→a 2

)
=

(
a1x a1y
a2x a2y

)
=

(
a11 a12
a21 a22

)
(7)

A point −→g of the direct lattice is defined as −→g = n1
−→a 1+

n2
−→a 2, with n1, n2 being integer numbers. The position of

an atom c in a cell at the origin (i.e. −→g = −→
0 ) is given as−→

A c = fc,1
−→a 1 + fc,2

−→a 2, and then in cell −→g the position
will be:
−→
A c + −→g = ( fc,1 + n−→g ,1)

−→a 1 + ( fc,2 + n−→g ,2)
−→a 2

We have used an additional index, i.e. n−→g ,1 means factor

n1 of the lattice vector −→g . The cartesian t component (with
t being x or y) of the vector

−→
A c +−→g , indicated as Ac,t + gt ,

is thus

Ac,t + gt =
2∑

m=1

( fc,m + n−→g ,m)amt

As all the integrals depend on the position of the nuclei, the
derivatives of the nuclear coordinates with respect to the cell
parameters are required:

∂ Ac,t + gt

∂ai j
=

2∑
m=1

( fc,m + n−→g ,m)δimδ j t

= ( fc,i + n−→g ,i )δ j t (8)
with the Kronecker symbol δ j t .

The main difference, compared to the three-dimensional
case, is Parry’s potential function �(

−→r − −→
A a) that is used:

�(
−→r − −→

A a) =
′∑

−→
h

1 − erf(
√

γ |−→r − −→
A a − −→

h |)
|−→r − −→

A a − −→
h |

+
′∑

−→
K

exp(2π i(Kx (x − Aa,x ) + Ky(y − Aa,y)))

2V |−→K |

×
(

exp(2π |−→K |(z − Aa,z))

×
(

1 − erf

(
√

γ (z − Aa,z) + π |−→K |√
γ

))

+ exp(−2π |−→K |(z − Aa,z))

×
(

1 + erf

(
√

γ (z − Aa,z) − π |−→K |√
γ

)))

−2π

V
(z − Aa,z)erf(

√
γ (z − Aa,z))

− 2
√

π

V
√

γ
exp

(−γ (z − Aa,z)
2) (9)

where
−→
h are the direct lattice vectors,

−→
K the reciprocal

lattice vectors. V is the area of the two-dimensional unit
cell, γ is a screening parameter which was optimized to be
γ = (2.4/V 1/2)2, in the two-dimensional case. Note that
this is different from the three-dimensional case [26] where
γ was chosen as γ = (2.8/V 1/3)2. The prime in the direct
lattice summation indicates that the summation includes all
values of the direct lattice vector

−→
h , with the exception of

the case when |−→r − −→
A a − −→

h | vanishes. In this case, the
term 1

|−→r −−→
A a−−→

h | is omitted from the sum. In the reciprocal

lattice series, the prime indicates that all terms with
−→
K �= −→

0
are included.

The error function erf is defined as in [24], Eq. (12).
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Like the Ewald potential, Parry’s potential depends on the
variables

−→
A c ,

−→
h , V , γ and

−→
K . The derivative with respect

to the cell parameters thus requires derivatives with respect
to these variables. For the derivatives with respect to

−→
A c and−→

h this is like in the three-dimensional case. There are minor
changes due to the two-dimensionality for the derivatives of
the area V , of the

−→
K -vectors with respect to ai j and of the

screening parameter γ .

3.1 Derivative of the area

The area is obtained as the magnitude of the cross product of
the cell parameters:

V = |−→a 1 × −→a 2| = |a1x a2y − a1ya2x | (10)

If we assume that a1x a2y − a1ya2x is positive, then the
derivatives ∂V

∂ai j
are obtained as:

∂V

∂a1x
= a2y (11)

∂V

∂a1y
= −a2x (12)

∂V

∂a2x
= −a1y (13)

∂V

∂a2y
= a1x (14)

Essentially, the formulas for the three-dimensional case
can be used, when setting a1z =0, a2z =0 and −→a 3 =(0, 0, 1).
This holds also for the derivatives of the reciprocal lattice
vectors, as described in the following section.

3.2 Derivative of the reciprocal lattice vectors

The reciprocal lattice vectors
−→
K can be expressed as

−→
K = n1

−→
b 1 + n2

−→
b 2 (15)

with the primitive vectors
−→
b i of the reciprocal lattice defined

as:
−→
b 1 = 2π

V
(a2y, −a2x ); −→

b 2 = 2π

V
(−a1y, a1x ) (16)

The derivatives are thus:

∂
−→
b 1

∂a1x
= − ∂V

∂a1x

−→
b 1

V
(17)

∂
−→
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∂a1y
= − ∂V

∂a1y

−→
b 1

V
(18)

∂
−→
b 1

∂a2x
= − ∂V

∂a2x

−→
b 1

V
+ 2π

V
(0,−1) (19)

∂
−→
b 1

∂a2y
= − ∂V

∂a2y

−→
b 1

V
+ 2π

V
(1, 0) (20)

and

∂
−→
b 2

∂a1x
= − ∂V

∂a1x

−→
b 2

V
+ 2π

V
(0, 1) (21)

∂
−→
b 2

∂a1y
= − ∂V

∂a1y

−→
b 2

V
+ 2π

V
(−1, 0) (22)

∂
−→
b 2

∂a2x
= − ∂V

∂a2x

−→
b 2

V
(23)

∂
−→
b 2

∂a2y
= − ∂V

∂a2y

−→
b 2

V
(24)

3.3 Derivative of the screening parameter

The derivative is straightforward, like in the three-dimen-
sional case:
∂γ

∂ai j
= ∂γ

∂V

∂V

∂ai j
= − γ

V

∂V

∂ai j
(25)

As a whole, Parry’s potential leads to similar terms appear-
ing in the derivatives as in the case of the Ewald potential.
This is what was to be expected, as Parry’s potential is essen-
tially obtained when Ewald’s approach to treat the Coulomb
interaction is applied to a system with two-dimensional peri-
odicity.

4 The one-dimensional case

In the one-dimensional case, there is only one cell parameter:
axx = a11 = a = |−→a |. This case is somewhat different from
the two- and three-dimensional case because a pure real space
approach is used in the CRYSTAL code for the potential to
describe the Coulomb interaction [29]. The potential consists
of a point charge +1, neutralized by a uniform charge distri-
bution of length a, with charge density −1/a. The uniform
charge distribution is then again compensated. Up to a cer-
tain range, the summation is performed exactly. For larger
distances, the summation is instead approximated with the
help of the Euler–MacLaurin summation rule. As a whole,
the following expression was obtained [29]:

�(
−→r )=

M∑
n=−M

′ 1

|−→r − n−→a | −
H(U − z, α) + H(U + z, α)

a

+ξ(M,
−→r ) + ξ(M,−−→r ) (26)

The first term comprises the exact part, the next two (with
the H function) the region due to the uniform charge density
in the range of the exact sum (from −M−→a to M−→a ), the
remaining two terms (the ξ -function) are the approximated
part. The prime indicates that terms with |−→r − n−→a | = 0
are omitted. M is thus the number of cells, where the sum
is performed exactly, and U = a(M + 1/2). α is defined
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as α = x2 + y2, with −→r = (x, y, z). H is the function
H(p, α) = ln(

√
p2 + α + p). ξ(M,

−→r ) and ξ(M, −−→r )
are contributions from the long range part, which is approx-
imated by the Euler–MacLaurin rectangle rule summation
formula. For more details, see [29]. For the present purpose,
it is important to note that the direct lattice vector a appears
in the potential, but no screening parameter γ and no recip-
rocal lattice vectors

−→
K as in the two- and three-dimensional

case. This means that derivatives with respect to the nuclear
coordinates

−→
A c and derivatives with respect to the direct lat-

tice vectors n−→a appear, which are essentially given by the
nuclear gradients, multiplied with the fractional coordinates.
The derivatives with respect to a due to the H and ξ function
are very lengthy, but still straightforward. They are thus not
discussed here, but formulas can be derived from Saunders’
article [29].

5 Examples

In this section, we give some numerical examples of the
accuracy of the gradients. The tests considered are essen-
tially identical or similar to the test cases distributed with
the CRYSTAL code and with those from [14]. Note that the
fractional coordinates of the atoms were not optimized.

First, two systems with one-dimensional periodicity are
considered. In Table 1, SN is periodically arranged. The ana-
lytical and numerical derivative agree well up to four digits,
and the minimum of the energy at a = 4.42 Å agrees with
the place where the gradient changes its sign. In Table 2,
such a comparison is done for polyglycine. The agreement of
numerical and analytical gradients is similar to SN, and again

Table 1 SN, with one-dimensional periodicity

a Analytical derivative Numerical derivative Energy
[Å] [Eh/a0] [Eh/a0] [Eh]
4.30 0.04144 0.0414 −893.870081
4.41 0.00372 0.0037 −893.874639
4.42 0.00064 0.0006 −893.874680
4.43 −0.00238 −0.0024 −893.874663
4.500 −0.02208 −0.0221 −893.873013

A comparison of analytical and numerical gradient is done for various
unit cell lengths. A [3s2p1d] basis set was used for S, and a [2s1p]
basis set for N

Table 2 Polyglycine: a comparison of analytical and numerical gradient
is done for various unit cell lengths

a Analytical derivative Numerical derivative Energy
[Å] [Eh/a0] [Eh/a0] [Eh]
7.30 0.01956 0.0196 −408.220173
7.42 0.00116 0.0012 −408.222495
7.43 −0.00030 −0.0003 −408.222503
7.44 −0.00175 −0.0017 −408.222484
7.50 −0.01018 −0.0102 −408.221807

Basis sets of the size [2s1p] were used for C, O, N and a [1s] basis set
for H

Table 3 NiO, ferromagnetic, unrestricted Hartree–Fock

a Analytical Numerical derivative Energy
[Å] derivative [Eh/a0] [Eh/a0] [Eh]

ITOL 6 6 6 6 12 (default)
5.00 −0.10864 −0.1074 −1581.454974

ITOL 6 6 6 12 12
5.00 −0.10782 −0.1078 −1581.456358

The gradient with respect to the cell parameter is computed for two
different values of the ITOL parameters. A [5s4p2d] basis set for Ni
was used, and a [4s3p] basis set for O

the vanishing of the gradient agrees with the minimum of the
energy, to at least 0.01 Å. In Table 3, ferromagnetic NiO is
studied at the level of unrestricted Hartree–Fock. The agree-
ment of numerical and analytical gradient can be improved by
increasing the “ITOL”-parameters [11], as described earlier
[12,24]. Indeed, when increasing them from default values to
higher ones, symmetric in ITOL4 and ITOL5, then analytical
and numerical gradient match better. Note that, when running
at lower ITOL parameters, an inaccuracy is introduced in the
total energy expression and thus in the numerical gradients as
well. The fact that numerical and analytical gradients match
less well at low ITOL values is thus a combination of an inac-
curacy in the energy expression (which affects the numerical
gradient) and an inaccuracy in the analytical gradient. Still, in
all the tests performed so far, no severe error was found when
using default values for the ITOL parameters. Using higher
ITOL parameters is mainly useful for tests of the correctness
of the code.

Table 4 MgO surface, three atomic layers

a Analytical derivative Numerical derivative Energy
[Å] [Eh/a0] [Eh/a0] [Eh]
2.80 0.10544 0.1058 −823.930493
2.88 0.01035 0.0108 −823.939034
2.89 0.00006 0.0006 −823.939142
2.90 −0.00991 −0.0095 −823.939058
3.00 −0.09403 −0.0937 −823.928906

The unit cell consists of three Mg and three O atoms, with a1x = a2y =
a. Basis sets of the size [3s2p] were used. The derivative with respect to
∂
∂a = (∂/∂a1x )(∂a1x/∂a)+ (∂/∂a2y)(∂a2y/∂a) is displayed, (∂/∂a1y)
and (∂/∂a2x ) do not contribute

Table 5 Al2O3, six atomic layers

a Analytical derivative Numerical derivative Energy
[Å] [Eh/a0] [Eh/a0] [Eh]
4.20 0.27548 0.2757 −1400.244182
4.40 0.00590 0.0059 −1400.295000
4.41 −0.00570 −0.0060 −1400.295003
4.42 −0.01712 −0.0171 −1400.294787
4.70 −0.27847 −0.2786 −1400.211859

The unit cell consists of six Al and four O atoms, with a1x =√
3/2 ∗ a2y = √

3/2 ∗ a. Basis sets of the size [3s2p1d] for Al
and [2s1p] for O were chosen. The derivative with respect to ∂

∂a =
(∂/∂a1x )(∂a1x/∂a) + (∂/∂a2y)(∂a2y/∂a) is displayed, (∂/∂a1y) and
(∂/∂a2x ) do not contribute
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Then, various systems with two-dimensional periodicity
are considered. In Table 4, three MgO layers are considered.
Numerical and analytical derivative agree to three digits, and
the minimum of the energy and the vanishing of the gradient
agree also well. The same accuracy is found for Al2O3 in
Table 5, where a slab with six atomic layers is considered.
In Table 6, a Cr2O3 slab was chosen as an example for unre-
stricted Hartree–Fock. The accuracy is slightly worse when
comparing the numerical and the analytical gradient. This
can again be improved by increasing the “ITOL”-parame-
ters. The minimum in the energy agrees already with default
“ITOL” values to at least 0.01 Å. Finally, in Table 7, LiF was
arranged with two-dimensional periodicity, without symme-
try, in such a way that three components of the cell gradient
(a1x , a1y, a2y) can be computed independently. This test thus
demonstrates that these components are correctly computed.

In Table 8, the CPU times are displayed. The calcula-
tions were performed on a single CPU of a Compaq ES45,
with a clock rate of 1 GHz. As in the three-dimensional case,
we compare again the CPU time for the integrals with the

Table 6 Cr2O3, six atomic layers, ferromagnetic, unrestricted Hartree–
Fock

a Analytical Numerical derivative Energy
[Å] derivative [Eh/a0] [Eh/a0] [Eh]

ITOL 6 6 6 6 12 (default)
4.70 0.13465 0.1379 −4622.589785
4.87 0.00426 0.0069 −4622.612278
4.88 −0.00253 0.0001 −4622.612339
4.89 −0.00921 −0.0066 −4622.612277
5.00 −0.07676 −0.0745 −4622.603638

ITOL 6 6 6 12 12
4.88 −0.00116 −0.0011 −4622.617935
5.00 −0.07539 −0.0754 −4622.609006

The unit cell consists of six Cr and from four O atoms, with a1x =√
3/2 ∗ a2y = √

3/2 ∗ a. Basis sets of the size [5s4p2d] for Cr
and [3s2p] for O were chosen. The derivative with respect to ∂

∂a =
(∂/∂a1x )(∂a1x/∂a) + (∂/∂a2y)(∂a2y/∂a) is displayed, (∂/∂a1y) and
(∂/∂a2x ) do not contribute

Table 7 LiF, with a unit cell of a1x = 5 Å, a2y = 4 Å, and an angle of
60◦, resulting in a1y = 2.5 Å

Component Analytical derivative Numerical derivative
[Eh/a0] [Eh/a0]

∂ E

∂a1x
0.04045 0.0406

∂ E

∂a1y
−0.04415 −0.0441

∂ E

∂a2y
−0.01838 −0.0183

The F atoms are at (x = 0.1, y = 0 (x and y in fractional units),
z = 0.1 Å), (x = 0.5, y = 0.5 (x and y in fractional units), z = 0.3 Å),
the Li atoms at (x = 0.5, y = 0 (x and y in fractional units), z = 0.2 Å),
and (x = 0, y = 0.5 (x and y in fractional units), z = 0.4 Å). A [2s1p]
basis set was used for Li, a [4s3p] basis set for F

Table 8 CPU times for one single point calculation of the various sys-
tems

System CPU time, in seconds
Integrals SCF Gradients

SN 1 1 6
Polyglycine 2 4 17
NiO 2 14 9
MgO 5 3 52
Al2O3 8 12 78
Cr2O3 27 153 176
LiF 3 18 20

The calculations were performed on a Compaq ES45, using a single
CPU (1 GHz). The CPU times refer to the part for the integrals (all
the integrals were written to disk), the self-consistent field (SCF) pro-
cedure, and to the calculation of all the gradients (i.e. nuclear gradients
and cell gradients)

time for the gradients. The CPU time for all the gradients
(nuclear and cell gradients) is roughly five to ten times the
CPU time for the integrals. This may become smaller in the
future with further optimizations in the gradient code. Note
that the CPU time for the self consistent field calculations
is relatively high because a very low convergence threshold
was chosen in order to ensure the accuracy of the succeed-
ing gradient calculation (the gradient calculation is the more
accurate, the more accurately the self consistent field equa-
tions are solved).

The CPU times thus indicate that analytical gradients can
be computed at a relatively low expense. Compared to numer-
ical gradients, it appears that analytical gradients should usu-
ally be favorable, especially because numerical gradients will
depend on the step size, and often it will be necessary to
break a symmetry for a finite displacement, to compute the
numerical gradient. Numerical gradients require at least one
additional energy evaluation for each coordinate to be opti-
mized, which makes analytical gradients clearly favorable, if
there is a large number of geometrical parameters.

6 Conclusion

A formalism for the calculation of the analytical gradient of
the Hartree–Fock energy, with respect to the cell parameter,
has been presented and implemented in the code CRYSTAL,
for the case of systems periodic in one and two-dimensions.
The implementation includes the cases of spin-restricted and
unrestricted polarization. It was shown that a high accuracy
can be achieved.
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